Ultrafast spin-flip dynamics in focus

Nowadays physics and chemistry are intensively developing within the ‘ultrafast paradigm’ addressing processes occurring on the femto- (10-15 s) and attosecond timescales (10-18 s). An outstanding progress has been achieved in understanding molecules in motion with femtosecond resolution including movies of chemical reactions. Going further down to hundreds and even tens of attoseconds, one can explore the fundamental limits of electronic motion in atoms and molecules.

tumblr

Apart from being of fundamental interest, the peculiarities of intricate electron dynamics in molecules have their practical implications, for instance, for molecular electronics limiting the speed of the signal transmission. That is why it has been extensively studied, although mostly theoretically since experimental observations represent a very non-trivial task and stay scarce.

During last decades, the devices where the spin of the electrons plays a decisive role has been suggested that gave birth to the new field of physics called spintronics. With this respect, the materials which undergo ultrafast spin-flip upon absorption of light attracted much attention. Systems, where such an effect was observed, are mostly transition metal complexes which can exist in low- and high-spin forms.

Recently, an article from the subgroup headed by me appeared on the pages of Physics Reviews Letters suggesting a new mechanism for the ultrafast spin-flip in transition metal complexes. It was demonstrated on the example of the Fe(II) aqua complex where the excitation with the soft X-ray light created a hole in the 2p level of iron. Due to the strong spin-orbit coupling in the core-excited electronic state the spin transition takes only about 2 fs what is about 100 times faster than rates reported for valence excitations before. Moreover, with a modest variation of the excitation pulse length and its carrier frequency one can potentially govern the efficiency of such spin transition. This makes a basis for future manipulations of the spin states using short wavelength light.

The effect in focus, of course, needs experimental verification. However, such an experiment requires intense isolated attosecond X-ray pulses and is very difficult to realize. Nevertheless, we expect the experimental evidence to appear due to the upcoming X-ray free electron lasers and future developments of high-harmonic generation setups.