DFG project accepted!

I would like to invite you for the piece of virtual cake!

IMG_0611

What’s the reason for that? Two days ago I have got an approval of my DFG project entitled “Soft X-ray spectroscopy and correlated many-electron dynamics of molecular systems from first principles theory”. (For those who don’t work in science in Germany, DFG (Deutsche Forschungsgemeinschaft) stands for German Research Foundation.) This project goes along the lines of our recent publications in Physical Review Letters and Molecular Physics which served as a preliminary work basis for the project.  It includes my own research position and a Ph.D. student for 3 years as well as money for the midterm workshop.

Remarkably, I was pleased to get excellent reviews, and what is surprising, referees even give me encouraging pieces of advice how to promote my scientific career and use the financial support from DFG in the most efficient way.

The chocolate cake was made by my wife Olga and decorated with the basic working expression for this project. It was successfully annihilated by my colleagues, that is why I can suggest you only its virtual counterpart. Nice offer, zero calories!

Advertisements

More on spin state dynamics

Recently, I wrote about our ultrafast spin dynamics project. The first publication in Phys. Rev. Lett. was a proof of concept article where we have shown the possibility of soft X-ray light to trigger an unprecedentedly fast change of a spin state. A follow-up article presenting the theoretical method used in this investigation in detail also appeared recently in the issue of Molecular Physics devoted to the anniversary of Andre D. Bandrauk:

Huihui Wang, Sergey I. Bokarev, Saadullah G. Aziz, Oliver Kühn Density matrix-based time-dependent configuration interaction approach to ultrafast spin-flip dynamics Mol. Phys. (2017) 1-10.

In this article, we reformulate the problem in the form of a density matrix which allows one to treat general open quantum systems with energy dissipation. In addition to the more thorough study of the influence of different parameters of an excitation pulse on the dynamics, we also discuss a regime where the strong electron correlation plays a decisive role. It was shown that core-excited electronic states may demonstrate entangled dynamics both due to the strong spin-orbit coupling and electron correlation. This makes them interesting objects for the future studies of the ultimate limits of the ultrafast electron motion in atoms, molecules, and extended systems.

Ultrafast spin-flip dynamics in focus

Nowadays physics and chemistry are intensively developing within the ‘ultrafast paradigm’ addressing processes occurring on the femto- (10-15 s) and attosecond timescales (10-18 s). An outstanding progress has been achieved in understanding molecules in motion with femtosecond resolution including movies of chemical reactions. Going further down to hundreds and even tens of attoseconds, one can explore the fundamental limits of electronic motion in atoms and molecules.

tumblr

Apart from being of fundamental interest, the peculiarities of intricate electron dynamics in molecules have their practical implications, for instance, for molecular electronics limiting the speed of the signal transmission. That is why it has been extensively studied, although mostly theoretically since experimental observations represent a very non-trivial task and stay scarce.

During last decades, the devices where the spin of the electrons plays a decisive role has been suggested that gave birth to the new field of physics called spintronics. With this respect, the materials which undergo ultrafast spin-flip upon absorption of light attracted much attention. Systems, where such an effect was observed, are mostly transition metal complexes which can exist in low- and high-spin forms.

Recently, an article from the subgroup headed by me appeared on the pages of Physics Reviews Letters suggesting a new mechanism for the ultrafast spin-flip in transition metal complexes. It was demonstrated on the example of the Fe(II) aqua complex where the excitation with the soft X-ray light created a hole in the 2p level of iron. Due to the strong spin-orbit coupling in the core-excited electronic state the spin transition takes only about 2 fs what is about 100 times faster than rates reported for valence excitations before. Moreover, with a modest variation of the excitation pulse length and its carrier frequency one can potentially govern the efficiency of such spin transition. This makes a basis for future manipulations of the spin states using short wavelength light.

The effect in focus, of course, needs experimental verification. However, such an experiment requires intense isolated attosecond X-ray pulses and is very difficult to realize. Nevertheless, we expect the experimental evidence to appear due to the upcoming X-ray free electron lasers and future developments of high-harmonic generation setups.